Rui Qi Chen

EDUCATION

Georgia Institute of TechnologyAtlanta, GAH. Milton Stewart School of Industrial and Systems Engineering2021–PresentPh.D. Student in Machine Learning2021–PresentCarnegie Mellon UniversityPittsburgh, PAB.S. in Chemical Engineering, University and College Honors2017–2021

– Minor: Computer Science

EXPERIENCE

Fritz Haber Institute - Max-Planck-Gesellschaft

Research Internship at Karsten Reuter Group

- Compared Bayesian and ensemble methods of uncertainty quantification for machine-learned interatomic potentials to improve active learning framework.
- Explored uncertainty recalibration methods to improve the quality of uncertainty measures.

Carnegie Mellon University

Undergraduate Research Assistant at Zachary Ulissi Group

- Calculated adsorption energies of different adsorbates and surfaces with density functional theory (DFT) to find desirable catalysts for electrochemical processes.
- Trained machine learning models to prioritize high-success calculations and skip futile calculations.
- Developed an active learning framework that learns the correction between first principle theory and simple physics-based potentials to serve as an inexpensive DFT surrogate.

BorsodChem

Liaison Internship

- Oversaw the pipe replacement process in the toluene diisocyanate and methylenediphenyl diisocyanate production plants.
- Supervised the Chinese welders and pipefitters in the Hungarian work environment to comply with local work habits and safety standards.

PUBLICATIONS

 M. Shuaibi, S. Sivakumar, R. Q. Chen, and Z. W. Ulissi, "Enabling robust offline active learning for machine learning potentials using simple physics-based priors", *Machine Learning: Science and Technology*, vol. 2, no. 2, p. 025007, 2020.

POSTER PRESENTATIONS

٠	"Accelerating Quantum Mechanical Simulations Using Physics-Based Machine Learning Potentials"	2020
	AIChE Annual Meeting (virtual)	
•	"Enhancing the Workflow Efficiency of High Throughput Surface Calculations"	2019
	Pittsburgh-Cleveland Catalysis Society Annual Symposium	

Summer 2021 d interatomic

Berlin, Germany

Pittsburgh, PA Summer 2019–Spring 2021

Kazincbarcika, Hungary

Summer 2018

SKILLS

- Software: MATLAB, Aspen Plus, GAMS, Linux, Conda, MongoDB, Google Search
- **Programming:** Python (NumPy, PyTorch, pandas, SciPy, seaborn, OpenCV), C, Standard ML, assembly language, Prolog

LANGUAGES

- English: fluent
- Mandarin: native
- Hungarian: native
- **Spanish:** intermediate

Projects

See full list of research projects on ruiqic.github.io/projects/

Active Learning for Machine Learning Potentials

• A software package for active learning to reduce the cost of *ab-initio* atomistic simulations.

Atomistic Machine Learning Package PyTorch

• A machine learning potential package to model atomic interactions

SCHOLARSHIPS

•	Chemical Engineering Summer Scholars	2020
•	Summer Undergraduate Research Fellowship	2019
•	Chemical Engineering Summer Scholars	2019

ACADEMIC AWARDS

• Dean's List

EXTRACURRICULAR ACTIVITIES

•	The Kiltie Band Played clarinet in a large student organized band. Parformances ranged from alassical rises to marching hand music	2020
•	Tartan Wind Ensemble	2018-2019
	Played clarinet in a young, student-run ensemble of 25 people. Performed classical music in a concert every semester.	

Fall 2017–Spring 2021